Below Neel temperature, the alloys experiences similar thermal conductivity temperature dependence to the amorphous or glass sample due to the existence of scatterings from magnetic clusters. 合金在反铁磁转变温度以下表现出与无序样品或者玻璃态样品类似的热导率温度关系,这可能是源于合金中磁性团簇的散射。
Furthermore, our calculation also shows that the ratio of the Kondo temperature and the Neel temperature ( TK/ TN) strongly modifies the maximum value of the resistivity, and thus plays the role of the heavy fermion parameter. 此外,计算还表明Kondo温度与Neel温度的比值(TK/TN)强烈地调制电阻率的极大值,起着重费密子参量的作用。
We study effect of the next-nearest-neighbor coupling on antiferromagnetic order, Neel temperature, and spin correlation in terms of our anisotropic nonlinear spin wave theory. 在本人已有的工作&各向异性非线性自旋波理论的基础上研究次近邻耦合对序参数、Neel温度和自旋关联的影响。
In general, the magnetoelectric coupling between ferroelectric order parameter and magnetic order parameter takes place when the magnetic Neel temperature ( Tn) is close to the ferroelectric Curie temperature ( T_ ( fe)). 一般,只有当磁性铁电体的磁尼尔温度TN接近其铁电居里温度T(FE)时,铁电序参量和磁序参量才有磁电耦合效应。
The experimental results show that the Neel temperature increases with pressure and the magnetic resistivity p, varies proportionally to InT at T> T_N. 实验表明,尼尔温度随压强增大而增大,且温度T>TN后,磁性电阻率ρs与lnΤ成正比。
Experimental data shows that there exists coupling between the magnetism and dielectric properties, which leads to the dielectric anomaly near its Neel temperature. 实验表明在该材料中,磁和介电性质之间存在耦合,其介电常数在尼尔温度附近出现异常。
As far as the two-dimensional ( 2D) quantum Heisenberg antiferromagnet is concerned, its low-temperature physics is generally accepted to be determined by the spin-wave excitations upon the long-range Neel order. At high temperature, the static magnetic susceptibility shows a Curie-Weiss law. 对于二维反铁磁体,其物理在低温区大家公认是由长程奈尔序上的低能自旋波激发决定,在高温部分其磁化率是遵从于Curie-Weiss定律。
It was found that a large uniaxial anisotropy Hku was produced in Fe/ CoO system under low temperatures and this Hku decreased gradually with increasing temperatures and finally disappeared with temperatures above the CoO Neel temperature. 实验发现,在低温下Fe/CoO体系中会产生一个很大的单轴各向异性Hku,并且随着温度的升高Hku逐渐减小,在高于CoO的奈尔温度以后消失。
On the other hand, the difference among the exchange effects between the magnetic 3d electrons at center and ones at corners causes the helical structure below the Neel temperature. 另一方面,Mn的3d自旋电子具有磁性,顶点和中心Mn原子间交换作用的差别导致了低温磁螺旋结构的形成。